Classifiers in Context: Prediction of Radiological Characteristic Ratings for Lung Nodule Malignancy

نویسندگان

  • Ashok Rao
  • G. Hemantha Kumar
چکیده

In this paper, we are exploring a panel of classifier response to an imbalanced medical data set. In this work we are using LIDC (Lung Image Database Consortium) dataset, which is a very good example for imbalanced data. The main objective of this work is to examine how the response of different categories of classifier is, when subjected to imbalanced dataset. We are considering five categories of classifiers which are grouped as, Instance Based classifier, Rule Based classifiers, Functional Classifier, Decision Tree classifier and Ensemble of Classifiers. The results from our experiments will be evaluated based on performance metrics such as Accuracy, Precision, Recall, F-measure, Area under curve and Kappa statistics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The colossal circumvention of the lung lesion during lung stereotaxy

This is a case report on stereotaxic (Stereotactic Body Radiotherapy-SBRT) for lung cancer located in the left lower lobe (Segment 6, S6). There have been no reports on marked displacement of the peripheral lung cancer during radiotherapy. A pulmonary nodule was discovered on computed tomography (CT) conducted for a persistent cough in an 87-year-old male. According to diagnostic imaging, this ...

متن کامل

Joint Learning for Pulmonary Nodule Segmentation, Attributes and Malignancy Prediction

Refer to the literature of lung nodule classification, many studies adopt Convolutional Neural Networks (CNN) to directly predict the malignancy of lung nodules with original thoracic Computed Tomography (CT) and nodule location. However, these studies cannot tell how the CNN works in terms of predicting the malignancy of the given nodule, e.g., it’s hard to conclude that whether the region wit...

متن کامل

Predicting Radiological Panel Opinions Using a Panel of Machine Learning Classifiers

This paper uses an ensemble of classifiers and active learning strategies to predict radiologists’ assessment of the nodules of the Lung Image Database Consortium (LIDC). In particular, the paper presents machine learning classifiers that model agreement among ratings in seven semantic characteristics: spiculation, lobulation, texture, sphericity, margin, subtlety, and malignancy. The ensemble ...

متن کامل

Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy

Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...

متن کامل

Highly accurate model for prediction of lung nodule malignancy with CT scans

Computed tomography (CT) examinations are commonly used to predict lung nodule malignancy in patients, which are shown to improve noninvasive early diagnosis of lung cancer. It remains challenging for computational approaches to achieve performance comparable to experienced radiologists. Here we present NoduleX, a systematic approach to predict lung nodule malignancy from CT data, based on deep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013